File:  [LON-CAPA] / loncom / xml / LCMathComplex.pm
Revision 1.1: download - view: text, annotated - select for diffs
Tue Oct 29 21:01:21 2013 UTC (10 years, 6 months ago) by raeburn
Branches: MAIN
CVS tags: version_2_11_2_uiuc, version_2_11_2_msu, version_2_11_2_educog, version_2_11_2, version_2_11_1, version_2_11_0_RC3, version_2_11_0_RC2, version_2_11_0, HEAD
- Bug 6629.
  - Re-enable access to functionality in Math::Complex in Safe Space by
    copying Math::Complex 1.55 to LONCAPA::LCMathComplex and eliminating use
    of Config.pm
    - Whenever ./UPDATE is run to install or update LON-CAPA, the code which
      sets $nvsize in the standard Math::Complex script will be run in
      lcmathcomplex.piml and the value of $nvsize will be set to the
      appropriate value: 4, 8, 10, 12 or 16 in LONCAPA/LCMathComplex.pm.

    1: #
    2: # Complex numbers and associated mathematical functions
    3: # -- Raphael Manfredi	Since Sep 1996
    4: # -- Jarkko Hietaniemi	Since Mar 1997
    5: # -- Daniel S. Lewart	Since Sep 1997
    6: #
    7: # -- Stuart Raeburn: renamed package as LCMathComplex Oct 2013
    8: #    with minor changes to allow use in Safe Space
    9: #
   10: 
   11: package LONCAPA::LCMathComplex;
   12: 
   13: use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf $ExpInf);
   14: 
   15: $VERSION = 1.55;
   16: 
   17: BEGIN {
   18:     my %DBL_MAX =
   19: 	(
   20: 	  4  => '1.70141183460469229e+38',
   21: 	  8  => '1.7976931348623157e+308',
   22: 	 # AFAICT the 10, 12, and 16-byte long doubles
   23: 	 # all have the same maximum.
   24: 	 10 => '1.1897314953572317650857593266280070162E+4932',
   25: 	 12 => '1.1897314953572317650857593266280070162E+4932',
   26: 	 16 => '1.1897314953572317650857593266280070162E+4932',
   27: 	);
   28:     my $nvsize = 8;
   29:     die "LONCAPA::LCMathComplex: Could not figure out nvsize\n"
   30: 	unless defined $nvsize;
   31:     die "LONCAPA::LCMathComplex: Cannot not figure out max nv (nvsize = $nvsize)\n"
   32: 	unless defined $DBL_MAX{$nvsize};
   33:     my $DBL_MAX = eval $DBL_MAX{$nvsize};
   34:     die "LONCAPA::LCMathComplex: Could not figure out max nv (nvsize = $nvsize)\n"
   35: 	unless defined $DBL_MAX;
   36:     my $BIGGER_THAN_THIS = 1e30;  # Must find something bigger than this.
   37:     if ($^O eq 'unicosmk') {
   38: 	$Inf = $DBL_MAX;
   39:     } else {
   40: 	local $SIG{FPE} = { };
   41:         local $!;
   42: 	# We do want an arithmetic overflow, Inf INF inf Infinity.
   43: 	for my $t (
   44: 	    'exp(99999)',  # Enough even with 128-bit long doubles.
   45: 	    'inf',
   46: 	    'Inf',
   47: 	    'INF',
   48: 	    'infinity',
   49: 	    'Infinity',
   50: 	    'INFINITY',
   51: 	    '1e99999',
   52: 	    ) {
   53: 	    local $^W = 0;
   54: 	    my $i = eval "$t+1.0";
   55: 	    if (defined $i && $i > $BIGGER_THAN_THIS) {
   56: 		$Inf = $i;
   57: 		last;
   58: 	    }
   59: 	}
   60: 	$Inf = $DBL_MAX unless defined $Inf;  # Oh well, close enough.
   61: 	die "LONCAPA::LCMathComplex: Could not get Infinity"
   62: 	    unless $Inf > $BIGGER_THAN_THIS;
   63: 	$ExpInf = exp(99999);
   64:     }
   65:     # print "# On this machine, Inf = '$Inf'\n";
   66: }
   67: 
   68: use strict;
   69: 
   70: my $i;
   71: my %LOGN;
   72: 
   73: # Regular expression for floating point numbers.
   74: # These days we could use Scalar::Util::lln(), I guess.
   75: my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
   76: 
   77: require Exporter;
   78: 
   79: @ISA = qw(Exporter);
   80: 
   81: my @trig = qw(
   82: 	      pi
   83: 	      tan
   84: 	      csc cosec sec cot cotan
   85: 	      asin acos atan
   86: 	      acsc acosec asec acot acotan
   87: 	      sinh cosh tanh
   88: 	      csch cosech sech coth cotanh
   89: 	      asinh acosh atanh
   90: 	      acsch acosech asech acoth acotanh
   91: 	     );
   92: 
   93: @EXPORT = (qw(
   94: 	     i Re Im rho theta arg
   95: 	     sqrt log ln
   96: 	     log10 logn cbrt root
   97: 	     cplx cplxe
   98: 	     atan2
   99: 	     ),
  100: 	   @trig);
  101: 
  102: my @pi = qw(pi pi2 pi4 pip2 pip4 Inf);
  103: 
  104: @EXPORT_OK = @pi;
  105: 
  106: %EXPORT_TAGS = (
  107:     'trig' => [@trig],
  108:     'pi' => [@pi],
  109: );
  110: 
  111: use overload
  112: 	'+'	=> \&_plus,
  113: 	'-'	=> \&_minus,
  114: 	'*'	=> \&_multiply,
  115: 	'/'	=> \&_divide,
  116: 	'**'	=> \&_power,
  117: 	'=='	=> \&_numeq,
  118: 	'<=>'	=> \&_spaceship,
  119: 	'neg'	=> \&_negate,
  120: 	'~'	=> \&_conjugate,
  121: 	'abs'	=> \&abs,
  122: 	'sqrt'	=> \&sqrt,
  123: 	'exp'	=> \&exp,
  124: 	'log'	=> \&log,
  125: 	'sin'	=> \&sin,
  126: 	'cos'	=> \&cos,
  127: 	'tan'	=> \&tan,
  128: 	'atan2'	=> \&atan2,
  129:         '""'    => \&_stringify;
  130: 
  131: #
  132: # Package "privates"
  133: #
  134: 
  135: my %DISPLAY_FORMAT = ('style' => 'cartesian',
  136: 		      'polar_pretty_print' => 1);
  137: my $eps            = 1e-14;		# Epsilon
  138: 
  139: #
  140: # Object attributes (internal):
  141: #	cartesian	[real, imaginary] -- cartesian form
  142: #	polar		[rho, theta] -- polar form
  143: #	c_dirty		cartesian form not up-to-date
  144: #	p_dirty		polar form not up-to-date
  145: #	display		display format (package's global when not set)
  146: #
  147: 
  148: # Die on bad *make() arguments.
  149: 
  150: sub _cannot_make {
  151:     die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
  152: }
  153: 
  154: sub _make {
  155:     my $arg = shift;
  156:     my ($p, $q);
  157: 
  158:     if ($arg =~ /^$gre$/) {
  159: 	($p, $q) = ($1, 0);
  160:     } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
  161: 	($p, $q) = ($1 || 0, $2);
  162:     } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
  163: 	($p, $q) = ($1, $2 || 0);
  164:     }
  165: 
  166:     if (defined $p) {
  167: 	$p =~ s/^\+//;
  168: 	$p =~ s/^(-?)inf$/"${1}9**9**9"/e;
  169: 	$q =~ s/^\+//;
  170: 	$q =~ s/^(-?)inf$/"${1}9**9**9"/e;
  171:     }
  172: 
  173:     return ($p, $q);
  174: }
  175: 
  176: sub _emake {
  177:     my $arg = shift;
  178:     my ($p, $q);
  179: 
  180:     if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
  181: 	($p, $q) = ($1, $2 || 0);
  182:     } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
  183: 	($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
  184:     } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
  185: 	($p, $q) = ($1, 0);
  186:     } elsif ($arg =~ /^\s*$gre\s*$/) {
  187: 	($p, $q) = ($1, 0);
  188:     }
  189: 
  190:     if (defined $p) {
  191: 	$p =~ s/^\+//;
  192: 	$q =~ s/^\+//;
  193: 	$p =~ s/^(-?)inf$/"${1}9**9**9"/e;
  194: 	$q =~ s/^(-?)inf$/"${1}9**9**9"/e;
  195:     }
  196: 
  197:     return ($p, $q);
  198: }
  199: 
  200: #
  201: # ->make
  202: #
  203: # Create a new complex number (cartesian form)
  204: #
  205: sub make {
  206:     my $self = bless {}, shift;
  207:     my ($re, $im);
  208:     if (@_ == 0) {
  209: 	($re, $im) = (0, 0);
  210:     } elsif (@_ == 1) {
  211: 	return (ref $self)->emake($_[0])
  212: 	    if ($_[0] =~ /^\s*\[/);
  213: 	($re, $im) = _make($_[0]);
  214:     } elsif (@_ == 2) {
  215: 	($re, $im) = @_;
  216:     }
  217:     if (defined $re) {
  218: 	_cannot_make("real part",      $re) unless $re =~ /^$gre$/;
  219:     }
  220:     $im ||= 0;
  221:     _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
  222:     $self->_set_cartesian([$re, $im ]);
  223:     $self->display_format('cartesian');
  224: 
  225:     return $self;
  226: }
  227: 
  228: #
  229: # ->emake
  230: #
  231: # Create a new complex number (exponential form)
  232: #
  233: sub emake {
  234:     my $self = bless {}, shift;
  235:     my ($rho, $theta);
  236:     if (@_ == 0) {
  237: 	($rho, $theta) = (0, 0);
  238:     } elsif (@_ == 1) {
  239: 	return (ref $self)->make($_[0])
  240: 	    if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
  241: 	($rho, $theta) = _emake($_[0]);
  242:     } elsif (@_ == 2) {
  243: 	($rho, $theta) = @_;
  244:     }
  245:     if (defined $rho && defined $theta) {
  246: 	if ($rho < 0) {
  247: 	    $rho   = -$rho;
  248: 	    $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
  249: 	}
  250:     }
  251:     if (defined $rho) {
  252: 	_cannot_make("rho",   $rho)   unless $rho   =~ /^$gre$/;
  253:     }
  254:     $theta ||= 0;
  255:     _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
  256:     $self->_set_polar([$rho, $theta]);
  257:     $self->display_format('polar');
  258: 
  259:     return $self;
  260: }
  261: 
  262: sub new { &make }		# For backward compatibility only.
  263: 
  264: #
  265: # cplx
  266: #
  267: # Creates a complex number from a (re, im) tuple.
  268: # This avoids the burden of writing LONCAPA::LCMathComplex->make(re, im).
  269: #
  270: sub cplx {
  271: 	return __PACKAGE__->make(@_);
  272: }
  273: 
  274: #
  275: # cplxe
  276: #
  277: # Creates a complex number from a (rho, theta) tuple.
  278: # This avoids the burden of writing LONCAPA::LCMathComplex->emake(rho, theta).
  279: #
  280: sub cplxe {
  281: 	return __PACKAGE__->emake(@_);
  282: }
  283: 
  284: #
  285: # pi
  286: #
  287: # The number defined as pi = 180 degrees
  288: #
  289: sub pi () { 4 * CORE::atan2(1, 1) }
  290: 
  291: #
  292: # pi2
  293: #
  294: # The full circle
  295: #
  296: sub pi2 () { 2 * pi }
  297: 
  298: #
  299: # pi4
  300: #
  301: # The full circle twice.
  302: #
  303: sub pi4 () { 4 * pi }
  304: 
  305: #
  306: # pip2
  307: #
  308: # The quarter circle
  309: #
  310: sub pip2 () { pi / 2 }
  311: 
  312: #
  313: # pip4
  314: #
  315: # The eighth circle.
  316: #
  317: sub pip4 () { pi / 4 }
  318: 
  319: #
  320: # _uplog10
  321: #
  322: # Used in log10().
  323: #
  324: sub _uplog10 () { 1 / CORE::log(10) }
  325: 
  326: #
  327: # i
  328: #
  329: # The number defined as i*i = -1;
  330: #
  331: sub i () {
  332:         return $i if ($i);
  333: 	$i = bless {};
  334: 	$i->{'cartesian'} = [0, 1];
  335: 	$i->{'polar'}     = [1, pip2];
  336: 	$i->{c_dirty} = 0;
  337: 	$i->{p_dirty} = 0;
  338: 	return $i;
  339: }
  340: 
  341: #
  342: # _ip2
  343: #
  344: # Half of i.
  345: #
  346: sub _ip2 () { i / 2 }
  347: 
  348: #
  349: # Attribute access/set routines
  350: #
  351: 
  352: sub _cartesian {$_[0]->{c_dirty} ?
  353: 		   $_[0]->_update_cartesian : $_[0]->{'cartesian'}}
  354: sub _polar     {$_[0]->{p_dirty} ?
  355: 		   $_[0]->_update_polar : $_[0]->{'polar'}}
  356: 
  357: sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
  358: 		     $_[0]->{'cartesian'} = $_[1] }
  359: sub _set_polar     { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
  360: 		     $_[0]->{'polar'} = $_[1] }
  361: 
  362: #
  363: # ->_update_cartesian
  364: #
  365: # Recompute and return the cartesian form, given accurate polar form.
  366: #
  367: sub _update_cartesian {
  368: 	my $self = shift;
  369: 	my ($r, $t) = @{$self->{'polar'}};
  370: 	$self->{c_dirty} = 0;
  371: 	return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
  372: }
  373: 
  374: #
  375: #
  376: # ->_update_polar
  377: #
  378: # Recompute and return the polar form, given accurate cartesian form.
  379: #
  380: sub _update_polar {
  381: 	my $self = shift;
  382: 	my ($x, $y) = @{$self->{'cartesian'}};
  383: 	$self->{p_dirty} = 0;
  384: 	return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
  385: 	return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
  386: 				   CORE::atan2($y, $x)];
  387: }
  388: 
  389: #
  390: # (_plus)
  391: #
  392: # Computes z1+z2.
  393: #
  394: sub _plus {
  395: 	my ($z1, $z2, $regular) = @_;
  396: 	my ($re1, $im1) = @{$z1->_cartesian};
  397: 	$z2 = cplx($z2) unless ref $z2;
  398: 	my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
  399: 	unless (defined $regular) {
  400: 		$z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
  401: 		return $z1;
  402: 	}
  403: 	return (ref $z1)->make($re1 + $re2, $im1 + $im2);
  404: }
  405: 
  406: #
  407: # (_minus)
  408: #
  409: # Computes z1-z2.
  410: #
  411: sub _minus {
  412: 	my ($z1, $z2, $inverted) = @_;
  413: 	my ($re1, $im1) = @{$z1->_cartesian};
  414: 	$z2 = cplx($z2) unless ref $z2;
  415: 	my ($re2, $im2) = @{$z2->_cartesian};
  416: 	unless (defined $inverted) {
  417: 		$z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
  418: 		return $z1;
  419: 	}
  420: 	return $inverted ?
  421: 		(ref $z1)->make($re2 - $re1, $im2 - $im1) :
  422: 		(ref $z1)->make($re1 - $re2, $im1 - $im2);
  423: 
  424: }
  425: 
  426: #
  427: # (_multiply)
  428: #
  429: # Computes z1*z2.
  430: #
  431: sub _multiply {
  432:         my ($z1, $z2, $regular) = @_;
  433: 	if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
  434: 	    # if both polar better use polar to avoid rounding errors
  435: 	    my ($r1, $t1) = @{$z1->_polar};
  436: 	    my ($r2, $t2) = @{$z2->_polar};
  437: 	    my $t = $t1 + $t2;
  438: 	    if    ($t >   pi()) { $t -= pi2 }
  439: 	    elsif ($t <= -pi()) { $t += pi2 }
  440: 	    unless (defined $regular) {
  441: 		$z1->_set_polar([$r1 * $r2, $t]);
  442: 		return $z1;
  443: 	    }
  444: 	    return (ref $z1)->emake($r1 * $r2, $t);
  445: 	} else {
  446: 	    my ($x1, $y1) = @{$z1->_cartesian};
  447: 	    if (ref $z2) {
  448: 		my ($x2, $y2) = @{$z2->_cartesian};
  449: 		return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
  450: 	    } else {
  451: 		return (ref $z1)->make($x1*$z2, $y1*$z2);
  452: 	    }
  453: 	}
  454: }
  455: 
  456: #
  457: # _divbyzero
  458: #
  459: # Die on division by zero.
  460: #
  461: sub _divbyzero {
  462:     my $mess = "$_[0]: Division by zero.\n";
  463: 
  464:     if (defined $_[1]) {
  465: 	$mess .= "(Because in the definition of $_[0], the divisor ";
  466: 	$mess .= "$_[1] " unless ("$_[1]" eq '0');
  467: 	$mess .= "is 0)\n";
  468:     }
  469: 
  470:     my @up = caller(1);
  471: 
  472:     $mess .= "Died at $up[1] line $up[2].\n";
  473: 
  474:     die $mess;
  475: }
  476: 
  477: #
  478: # (_divide)
  479: #
  480: # Computes z1/z2.
  481: #
  482: sub _divide {
  483: 	my ($z1, $z2, $inverted) = @_;
  484: 	if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
  485: 	    # if both polar better use polar to avoid rounding errors
  486: 	    my ($r1, $t1) = @{$z1->_polar};
  487: 	    my ($r2, $t2) = @{$z2->_polar};
  488: 	    my $t;
  489: 	    if ($inverted) {
  490: 		_divbyzero "$z2/0" if ($r1 == 0);
  491: 		$t = $t2 - $t1;
  492: 		if    ($t >   pi()) { $t -= pi2 }
  493: 		elsif ($t <= -pi()) { $t += pi2 }
  494: 		return (ref $z1)->emake($r2 / $r1, $t);
  495: 	    } else {
  496: 		_divbyzero "$z1/0" if ($r2 == 0);
  497: 		$t = $t1 - $t2;
  498: 		if    ($t >   pi()) { $t -= pi2 }
  499: 		elsif ($t <= -pi()) { $t += pi2 }
  500: 		return (ref $z1)->emake($r1 / $r2, $t);
  501: 	    }
  502: 	} else {
  503: 	    my ($d, $x2, $y2);
  504: 	    if ($inverted) {
  505: 		($x2, $y2) = @{$z1->_cartesian};
  506: 		$d = $x2*$x2 + $y2*$y2;
  507: 		_divbyzero "$z2/0" if $d == 0;
  508: 		return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
  509: 	    } else {
  510: 		my ($x1, $y1) = @{$z1->_cartesian};
  511: 		if (ref $z2) {
  512: 		    ($x2, $y2) = @{$z2->_cartesian};
  513: 		    $d = $x2*$x2 + $y2*$y2;
  514: 		    _divbyzero "$z1/0" if $d == 0;
  515: 		    my $u = ($x1*$x2 + $y1*$y2)/$d;
  516: 		    my $v = ($y1*$x2 - $x1*$y2)/$d;
  517: 		    return (ref $z1)->make($u, $v);
  518: 		} else {
  519: 		    _divbyzero "$z1/0" if $z2 == 0;
  520: 		    return (ref $z1)->make($x1/$z2, $y1/$z2);
  521: 		}
  522: 	    }
  523: 	}
  524: }
  525: 
  526: #
  527: # (_power)
  528: #
  529: # Computes z1**z2 = exp(z2 * log z1)).
  530: #
  531: sub _power {
  532: 	my ($z1, $z2, $inverted) = @_;
  533: 	if ($inverted) {
  534: 	    return 1 if $z1 == 0 || $z2 == 1;
  535: 	    return 0 if $z2 == 0 && Re($z1) > 0;
  536: 	} else {
  537: 	    return 1 if $z2 == 0 || $z1 == 1;
  538: 	    return 0 if $z1 == 0 && Re($z2) > 0;
  539: 	}
  540: 	my $w = $inverted ? &exp($z1 * &log($z2))
  541: 	                  : &exp($z2 * &log($z1));
  542: 	# If both arguments cartesian, return cartesian, else polar.
  543: 	return $z1->{c_dirty} == 0 &&
  544: 	       (not ref $z2 or $z2->{c_dirty} == 0) ?
  545: 	       cplx(@{$w->_cartesian}) : $w;
  546: }
  547: 
  548: #
  549: # (_spaceship)
  550: #
  551: # Computes z1 <=> z2.
  552: # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
  553: #
  554: sub _spaceship {
  555: 	my ($z1, $z2, $inverted) = @_;
  556: 	my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
  557: 	my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
  558: 	my $sgn = $inverted ? -1 : 1;
  559: 	return $sgn * ($re1 <=> $re2) if $re1 != $re2;
  560: 	return $sgn * ($im1 <=> $im2);
  561: }
  562: 
  563: #
  564: # (_numeq)
  565: #
  566: # Computes z1 == z2.
  567: #
  568: # (Required in addition to _spaceship() because of NaNs.)
  569: sub _numeq {
  570: 	my ($z1, $z2, $inverted) = @_;
  571: 	my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
  572: 	my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
  573: 	return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
  574: }
  575: 
  576: #
  577: # (_negate)
  578: #
  579: # Computes -z.
  580: #
  581: sub _negate {
  582: 	my ($z) = @_;
  583: 	if ($z->{c_dirty}) {
  584: 		my ($r, $t) = @{$z->_polar};
  585: 		$t = ($t <= 0) ? $t + pi : $t - pi;
  586: 		return (ref $z)->emake($r, $t);
  587: 	}
  588: 	my ($re, $im) = @{$z->_cartesian};
  589: 	return (ref $z)->make(-$re, -$im);
  590: }
  591: 
  592: #
  593: # (_conjugate)
  594: #
  595: # Compute complex's _conjugate.
  596: #
  597: sub _conjugate {
  598: 	my ($z) = @_;
  599: 	if ($z->{c_dirty}) {
  600: 		my ($r, $t) = @{$z->_polar};
  601: 		return (ref $z)->emake($r, -$t);
  602: 	}
  603: 	my ($re, $im) = @{$z->_cartesian};
  604: 	return (ref $z)->make($re, -$im);
  605: }
  606: 
  607: #
  608: # (abs)
  609: #
  610: # Compute or set complex's norm (rho).
  611: #
  612: sub abs {
  613: 	my ($z, $rho) = @_;
  614: 	unless (ref $z) {
  615: 	    if (@_ == 2) {
  616: 		$_[0] = $_[1];
  617: 	    } else {
  618: 		return CORE::abs($z);
  619: 	    }
  620: 	}
  621: 	if (defined $rho) {
  622: 	    $z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
  623: 	    $z->{p_dirty} = 0;
  624: 	    $z->{c_dirty} = 1;
  625: 	    return $rho;
  626: 	} else {
  627: 	    return ${$z->_polar}[0];
  628: 	}
  629: }
  630: 
  631: sub _theta {
  632:     my $theta = $_[0];
  633: 
  634:     if    ($$theta >   pi()) { $$theta -= pi2 }
  635:     elsif ($$theta <= -pi()) { $$theta += pi2 }
  636: }
  637: 
  638: #
  639: # arg
  640: #
  641: # Compute or set complex's argument (theta).
  642: #
  643: sub arg {
  644: 	my ($z, $theta) = @_;
  645: 	return $z unless ref $z;
  646: 	if (defined $theta) {
  647: 	    _theta(\$theta);
  648: 	    $z->{'polar'} = [ ${$z->_polar}[0], $theta ];
  649: 	    $z->{p_dirty} = 0;
  650: 	    $z->{c_dirty} = 1;
  651: 	} else {
  652: 	    $theta = ${$z->_polar}[1];
  653: 	    _theta(\$theta);
  654: 	}
  655: 	return $theta;
  656: }
  657: 
  658: #
  659: # (sqrt)
  660: #
  661: # Compute sqrt(z).
  662: #
  663: # It is quite tempting to use wantarray here so that in list context
  664: # sqrt() would return the two solutions.  This, however, would
  665: # break things like
  666: #
  667: #	print "sqrt(z) = ", sqrt($z), "\n";
  668: #
  669: # The two values would be printed side by side without no intervening
  670: # whitespace, quite confusing.
  671: # Therefore if you want the two solutions use the root().
  672: #
  673: sub sqrt {
  674: 	my ($z) = @_;
  675: 	my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
  676: 	return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
  677: 	    if $im == 0;
  678: 	my ($r, $t) = @{$z->_polar};
  679: 	return (ref $z)->emake(CORE::sqrt($r), $t/2);
  680: }
  681: 
  682: #
  683: # cbrt
  684: #
  685: # Compute cbrt(z) (cubic root).
  686: #
  687: # Why are we not returning three values?  The same answer as for sqrt().
  688: #
  689: sub cbrt {
  690: 	my ($z) = @_;
  691: 	return $z < 0 ?
  692: 	    -CORE::exp(CORE::log(-$z)/3) :
  693: 		($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
  694: 	    unless ref $z;
  695: 	my ($r, $t) = @{$z->_polar};
  696: 	return 0 if $r == 0;
  697: 	return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
  698: }
  699: 
  700: #
  701: # _rootbad
  702: #
  703: # Die on bad root.
  704: #
  705: sub _rootbad {
  706:     my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
  707: 
  708:     my @up = caller(1);
  709: 
  710:     $mess .= "Died at $up[1] line $up[2].\n";
  711: 
  712:     die $mess;
  713: }
  714: 
  715: #
  716: # root
  717: #
  718: # Computes all nth root for z, returning an array whose size is n.
  719: # `n' must be a positive integer.
  720: #
  721: # The roots are given by (for k = 0..n-1):
  722: #
  723: # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
  724: #
  725: sub root {
  726: 	my ($z, $n, $k) = @_;
  727: 	_rootbad($n) if ($n < 1 or int($n) != $n);
  728: 	my ($r, $t) = ref $z ?
  729: 	    @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
  730: 	my $theta_inc = pi2 / $n;
  731: 	my $rho = $r ** (1/$n);
  732: 	my $cartesian = ref $z && $z->{c_dirty} == 0;
  733: 	if (@_ == 2) {
  734: 	    my @root;
  735: 	    for (my $i = 0, my $theta = $t / $n;
  736: 		 $i < $n;
  737: 		 $i++, $theta += $theta_inc) {
  738: 		my $w = cplxe($rho, $theta);
  739: 		# Yes, $cartesian is loop invariant.
  740: 		push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
  741: 	    }
  742: 	    return @root;
  743: 	} elsif (@_ == 3) {
  744: 	    my $w = cplxe($rho, $t / $n + $k * $theta_inc);
  745: 	    return $cartesian ? cplx(@{$w->_cartesian}) : $w;
  746: 	}
  747: }
  748: 
  749: #
  750: # Re
  751: #
  752: # Return or set Re(z).
  753: #
  754: sub Re {
  755: 	my ($z, $Re) = @_;
  756: 	return $z unless ref $z;
  757: 	if (defined $Re) {
  758: 	    $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
  759: 	    $z->{c_dirty} = 0;
  760: 	    $z->{p_dirty} = 1;
  761: 	} else {
  762: 	    return ${$z->_cartesian}[0];
  763: 	}
  764: }
  765: 
  766: #
  767: # Im
  768: #
  769: # Return or set Im(z).
  770: #
  771: sub Im {
  772: 	my ($z, $Im) = @_;
  773: 	return 0 unless ref $z;
  774: 	if (defined $Im) {
  775: 	    $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
  776: 	    $z->{c_dirty} = 0;
  777: 	    $z->{p_dirty} = 1;
  778: 	} else {
  779: 	    return ${$z->_cartesian}[1];
  780: 	}
  781: }
  782: 
  783: #
  784: # rho
  785: #
  786: # Return or set rho(w).
  787: #
  788: sub rho {
  789:     LONCAPA::LCMathComplex::abs(@_);
  790: }
  791: 
  792: #
  793: # theta
  794: #
  795: # Return or set theta(w).
  796: #
  797: sub theta {
  798:     LONCAPA::LCMathComplex::arg(@_);
  799: }
  800: 
  801: #
  802: # (exp)
  803: #
  804: # Computes exp(z).
  805: #
  806: sub exp {
  807: 	my ($z) = @_;
  808: 	my ($x, $y) = @{$z->_cartesian};
  809: 	return (ref $z)->emake(CORE::exp($x), $y);
  810: }
  811: 
  812: #
  813: # _logofzero
  814: #
  815: # Die on logarithm of zero.
  816: #
  817: sub _logofzero {
  818:     my $mess = "$_[0]: Logarithm of zero.\n";
  819: 
  820:     if (defined $_[1]) {
  821: 	$mess .= "(Because in the definition of $_[0], the argument ";
  822: 	$mess .= "$_[1] " unless ($_[1] eq '0');
  823: 	$mess .= "is 0)\n";
  824:     }
  825: 
  826:     my @up = caller(1);
  827: 
  828:     $mess .= "Died at $up[1] line $up[2].\n";
  829: 
  830:     die $mess;
  831: }
  832: 
  833: #
  834: # (log)
  835: #
  836: # Compute log(z).
  837: #
  838: sub log {
  839: 	my ($z) = @_;
  840: 	unless (ref $z) {
  841: 	    _logofzero("log") if $z == 0;
  842: 	    return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
  843: 	}
  844: 	my ($r, $t) = @{$z->_polar};
  845: 	_logofzero("log") if $r == 0;
  846: 	if    ($t >   pi()) { $t -= pi2 }
  847: 	elsif ($t <= -pi()) { $t += pi2 }
  848: 	return (ref $z)->make(CORE::log($r), $t);
  849: }
  850: 
  851: #
  852: # ln
  853: #
  854: # Alias for log().
  855: #
  856: sub ln { LONCAPA::LCMathComplex::log(@_) }
  857: 
  858: #
  859: # log10
  860: #
  861: # Compute log10(z).
  862: #
  863: 
  864: sub log10 {
  865: 	return LONCAPA::LCMathComplex::log($_[0]) * _uplog10;
  866: }
  867: 
  868: #
  869: # logn
  870: #
  871: # Compute logn(z,n) = log(z) / log(n)
  872: #
  873: sub logn {
  874: 	my ($z, $n) = @_;
  875: 	$z = cplx($z, 0) unless ref $z;
  876: 	my $logn = $LOGN{$n};
  877: 	$logn = $LOGN{$n} = CORE::log($n) unless defined $logn;	# Cache log(n)
  878: 	return &log($z) / $logn;
  879: }
  880: 
  881: #
  882: # (cos)
  883: #
  884: # Compute cos(z) = (exp(iz) + exp(-iz))/2.
  885: #
  886: sub cos {
  887: 	my ($z) = @_;
  888: 	return CORE::cos($z) unless ref $z;
  889: 	my ($x, $y) = @{$z->_cartesian};
  890: 	my $ey = CORE::exp($y);
  891: 	my $sx = CORE::sin($x);
  892: 	my $cx = CORE::cos($x);
  893: 	my $ey_1 = $ey ? 1 / $ey : Inf();
  894: 	return (ref $z)->make($cx * ($ey + $ey_1)/2,
  895: 			      $sx * ($ey_1 - $ey)/2);
  896: }
  897: 
  898: #
  899: # (sin)
  900: #
  901: # Compute sin(z) = (exp(iz) - exp(-iz))/2.
  902: #
  903: sub sin {
  904: 	my ($z) = @_;
  905: 	return CORE::sin($z) unless ref $z;
  906: 	my ($x, $y) = @{$z->_cartesian};
  907: 	my $ey = CORE::exp($y);
  908: 	my $sx = CORE::sin($x);
  909: 	my $cx = CORE::cos($x);
  910: 	my $ey_1 = $ey ? 1 / $ey : Inf();
  911: 	return (ref $z)->make($sx * ($ey + $ey_1)/2,
  912: 			      $cx * ($ey - $ey_1)/2);
  913: }
  914: 
  915: #
  916: # tan
  917: #
  918: # Compute tan(z) = sin(z) / cos(z).
  919: #
  920: sub tan {
  921: 	my ($z) = @_;
  922: 	my $cz = &cos($z);
  923: 	_divbyzero "tan($z)", "cos($z)" if $cz == 0;
  924: 	return &sin($z) / $cz;
  925: }
  926: 
  927: #
  928: # sec
  929: #
  930: # Computes the secant sec(z) = 1 / cos(z).
  931: #
  932: sub sec {
  933: 	my ($z) = @_;
  934: 	my $cz = &cos($z);
  935: 	_divbyzero "sec($z)", "cos($z)" if ($cz == 0);
  936: 	return 1 / $cz;
  937: }
  938: 
  939: #
  940: # csc
  941: #
  942: # Computes the cosecant csc(z) = 1 / sin(z).
  943: #
  944: sub csc {
  945: 	my ($z) = @_;
  946: 	my $sz = &sin($z);
  947: 	_divbyzero "csc($z)", "sin($z)" if ($sz == 0);
  948: 	return 1 / $sz;
  949: }
  950: 
  951: #
  952: # cosec
  953: #
  954: # Alias for csc().
  955: #
  956: sub cosec { LONCAPA::LCMathComplex::csc(@_) }
  957: 
  958: #
  959: # cot
  960: #
  961: # Computes cot(z) = cos(z) / sin(z).
  962: #
  963: sub cot {
  964: 	my ($z) = @_;
  965: 	my $sz = &sin($z);
  966: 	_divbyzero "cot($z)", "sin($z)" if ($sz == 0);
  967: 	return &cos($z) / $sz;
  968: }
  969: 
  970: #
  971: # cotan
  972: #
  973: # Alias for cot().
  974: #
  975: sub cotan { LONCAPA::LCMathComplex::cot(@_) }
  976: 
  977: #
  978: # acos
  979: #
  980: # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
  981: #
  982: sub acos {
  983: 	my $z = $_[0];
  984: 	return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
  985: 	    if (! ref $z) && CORE::abs($z) <= 1;
  986: 	$z = cplx($z, 0) unless ref $z;
  987: 	my ($x, $y) = @{$z->_cartesian};
  988: 	return 0 if $x == 1 && $y == 0;
  989: 	my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
  990: 	my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
  991: 	my $alpha = ($t1 + $t2)/2;
  992: 	my $beta  = ($t1 - $t2)/2;
  993: 	$alpha = 1 if $alpha < 1;
  994: 	if    ($beta >  1) { $beta =  1 }
  995: 	elsif ($beta < -1) { $beta = -1 }
  996: 	my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
  997: 	my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
  998: 	$v = -$v if $y > 0 || ($y == 0 && $x < -1);
  999: 	return (ref $z)->make($u, $v);
 1000: }
 1001: 
 1002: #
 1003: # asin
 1004: #
 1005: # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
 1006: #
 1007: sub asin {
 1008: 	my $z = $_[0];
 1009: 	return CORE::atan2($z, CORE::sqrt(1-$z*$z))
 1010: 	    if (! ref $z) && CORE::abs($z) <= 1;
 1011: 	$z = cplx($z, 0) unless ref $z;
 1012: 	my ($x, $y) = @{$z->_cartesian};
 1013: 	return 0 if $x == 0 && $y == 0;
 1014: 	my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
 1015: 	my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
 1016: 	my $alpha = ($t1 + $t2)/2;
 1017: 	my $beta  = ($t1 - $t2)/2;
 1018: 	$alpha = 1 if $alpha < 1;
 1019: 	if    ($beta >  1) { $beta =  1 }
 1020: 	elsif ($beta < -1) { $beta = -1 }
 1021: 	my $u =  CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
 1022: 	my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
 1023: 	$v = -$v if $y > 0 || ($y == 0 && $x < -1);
 1024: 	return (ref $z)->make($u, $v);
 1025: }
 1026: 
 1027: #
 1028: # atan
 1029: #
 1030: # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
 1031: #
 1032: sub atan {
 1033: 	my ($z) = @_;
 1034: 	return CORE::atan2($z, 1) unless ref $z;
 1035: 	my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
 1036: 	return 0 if $x == 0 && $y == 0;
 1037: 	_divbyzero "atan(i)"  if ( $z == i);
 1038: 	_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
 1039: 	my $log = &log((i + $z) / (i - $z));
 1040: 	return _ip2 * $log;
 1041: }
 1042: 
 1043: #
 1044: # asec
 1045: #
 1046: # Computes the arc secant asec(z) = acos(1 / z).
 1047: #
 1048: sub asec {
 1049: 	my ($z) = @_;
 1050: 	_divbyzero "asec($z)", $z if ($z == 0);
 1051: 	return acos(1 / $z);
 1052: }
 1053: 
 1054: #
 1055: # acsc
 1056: #
 1057: # Computes the arc cosecant acsc(z) = asin(1 / z).
 1058: #
 1059: sub acsc {
 1060: 	my ($z) = @_;
 1061: 	_divbyzero "acsc($z)", $z if ($z == 0);
 1062: 	return asin(1 / $z);
 1063: }
 1064: 
 1065: #
 1066: # acosec
 1067: #
 1068: # Alias for acsc().
 1069: #
 1070: sub acosec { LONCAPA::LCMathComplex::acsc(@_) }
 1071: 
 1072: #
 1073: # acot
 1074: #
 1075: # Computes the arc cotangent acot(z) = atan(1 / z)
 1076: #
 1077: sub acot {
 1078: 	my ($z) = @_;
 1079: 	_divbyzero "acot(0)"  if $z == 0;
 1080: 	return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
 1081: 	    unless ref $z;
 1082: 	_divbyzero "acot(i)"  if ($z - i == 0);
 1083: 	_logofzero "acot(-i)" if ($z + i == 0);
 1084: 	return atan(1 / $z);
 1085: }
 1086: 
 1087: #
 1088: # acotan
 1089: #
 1090: # Alias for acot().
 1091: #
 1092: sub acotan { LONCAPA::LCMathComplex::acot(@_) }
 1093: 
 1094: #
 1095: # cosh
 1096: #
 1097: # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
 1098: #
 1099: sub cosh {
 1100: 	my ($z) = @_;
 1101: 	my $ex;
 1102: 	unless (ref $z) {
 1103: 	    $ex = CORE::exp($z);
 1104:             return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf();
 1105: 	}
 1106: 	my ($x, $y) = @{$z->_cartesian};
 1107: 	$ex = CORE::exp($x);
 1108: 	my $ex_1 = $ex ? 1 / $ex : Inf();
 1109: 	return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
 1110: 			      CORE::sin($y) * ($ex - $ex_1)/2);
 1111: }
 1112: 
 1113: #
 1114: # sinh
 1115: #
 1116: # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
 1117: #
 1118: sub sinh {
 1119: 	my ($z) = @_;
 1120: 	my $ex;
 1121: 	unless (ref $z) {
 1122: 	    return 0 if $z == 0;
 1123: 	    $ex = CORE::exp($z);
 1124:             return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf();
 1125: 	}
 1126: 	my ($x, $y) = @{$z->_cartesian};
 1127: 	my $cy = CORE::cos($y);
 1128: 	my $sy = CORE::sin($y);
 1129: 	$ex = CORE::exp($x);
 1130: 	my $ex_1 = $ex ? 1 / $ex : Inf();
 1131: 	return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
 1132: 			      CORE::sin($y) * ($ex + $ex_1)/2);
 1133: }
 1134: 
 1135: #
 1136: # tanh
 1137: #
 1138: # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
 1139: #
 1140: sub tanh {
 1141: 	my ($z) = @_;
 1142: 	my $cz = cosh($z);
 1143: 	_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
 1144: 	my $sz = sinh($z);
 1145: 	return  1 if $cz ==  $sz;
 1146: 	return -1 if $cz == -$sz;
 1147: 	return $sz / $cz;
 1148: }
 1149: 
 1150: #
 1151: # sech
 1152: #
 1153: # Computes the hyperbolic secant sech(z) = 1 / cosh(z).
 1154: #
 1155: sub sech {
 1156: 	my ($z) = @_;
 1157: 	my $cz = cosh($z);
 1158: 	_divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
 1159: 	return 1 / $cz;
 1160: }
 1161: 
 1162: #
 1163: # csch
 1164: #
 1165: # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
 1166: #
 1167: sub csch {
 1168: 	my ($z) = @_;
 1169: 	my $sz = sinh($z);
 1170: 	_divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
 1171: 	return 1 / $sz;
 1172: }
 1173: 
 1174: #
 1175: # cosech
 1176: #
 1177: # Alias for csch().
 1178: #
 1179: sub cosech { LONCAPA::LCMathComplex::csch(@_) }
 1180: 
 1181: #
 1182: # coth
 1183: #
 1184: # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
 1185: #
 1186: sub coth {
 1187: 	my ($z) = @_;
 1188: 	my $sz = sinh($z);
 1189: 	_divbyzero "coth($z)", "sinh($z)" if $sz == 0;
 1190: 	my $cz = cosh($z);
 1191: 	return  1 if $cz ==  $sz;
 1192: 	return -1 if $cz == -$sz;
 1193: 	return $cz / $sz;
 1194: }
 1195: 
 1196: #
 1197: # cotanh
 1198: #
 1199: # Alias for coth().
 1200: #
 1201: sub cotanh { LONCAPA::LCMathComplex::coth(@_) }
 1202: 
 1203: #
 1204: # acosh
 1205: #
 1206: # Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
 1207: #
 1208: sub acosh {
 1209: 	my ($z) = @_;
 1210: 	unless (ref $z) {
 1211: 	    $z = cplx($z, 0);
 1212: 	}
 1213: 	my ($re, $im) = @{$z->_cartesian};
 1214: 	if ($im == 0) {
 1215: 	    return CORE::log($re + CORE::sqrt($re*$re - 1))
 1216: 		if $re >= 1;
 1217: 	    return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
 1218: 		if CORE::abs($re) < 1;
 1219: 	}
 1220: 	my $t = &sqrt($z * $z - 1) + $z;
 1221: 	# Try Taylor if looking bad (this usually means that
 1222: 	# $z was large negative, therefore the sqrt is really
 1223: 	# close to abs(z), summing that with z...)
 1224: 	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
 1225: 	    if $t == 0;
 1226: 	my $u = &log($t);
 1227: 	$u->Im(-$u->Im) if $re < 0 && $im == 0;
 1228: 	return $re < 0 ? -$u : $u;
 1229: }
 1230: 
 1231: #
 1232: # asinh
 1233: #
 1234: # Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
 1235: #
 1236: sub asinh {
 1237: 	my ($z) = @_;
 1238: 	unless (ref $z) {
 1239: 	    my $t = $z + CORE::sqrt($z*$z + 1);
 1240: 	    return CORE::log($t) if $t;
 1241: 	}
 1242: 	my $t = &sqrt($z * $z + 1) + $z;
 1243: 	# Try Taylor if looking bad (this usually means that
 1244: 	# $z was large negative, therefore the sqrt is really
 1245: 	# close to abs(z), summing that with z...)
 1246: 	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
 1247: 	    if $t == 0;
 1248: 	return &log($t);
 1249: }
 1250: 
 1251: #
 1252: # atanh
 1253: #
 1254: # Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
 1255: #
 1256: sub atanh {
 1257: 	my ($z) = @_;
 1258: 	unless (ref $z) {
 1259: 	    return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
 1260: 	    $z = cplx($z, 0);
 1261: 	}
 1262: 	_divbyzero 'atanh(1)',  "1 - $z" if (1 - $z == 0);
 1263: 	_logofzero 'atanh(-1)'           if (1 + $z == 0);
 1264: 	return 0.5 * &log((1 + $z) / (1 - $z));
 1265: }
 1266: 
 1267: #
 1268: # asech
 1269: #
 1270: # Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
 1271: #
 1272: sub asech {
 1273: 	my ($z) = @_;
 1274: 	_divbyzero 'asech(0)', "$z" if ($z == 0);
 1275: 	return acosh(1 / $z);
 1276: }
 1277: 
 1278: #
 1279: # acsch
 1280: #
 1281: # Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
 1282: #
 1283: sub acsch {
 1284: 	my ($z) = @_;
 1285: 	_divbyzero 'acsch(0)', $z if ($z == 0);
 1286: 	return asinh(1 / $z);
 1287: }
 1288: 
 1289: #
 1290: # acosech
 1291: #
 1292: # Alias for acosh().
 1293: #
 1294: sub acosech { LONCAPA::LCMathComplex::acsch(@_) }
 1295: 
 1296: #
 1297: # acoth
 1298: #
 1299: # Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
 1300: #
 1301: sub acoth {
 1302: 	my ($z) = @_;
 1303: 	_divbyzero 'acoth(0)'            if ($z == 0);
 1304: 	unless (ref $z) {
 1305: 	    return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
 1306: 	    $z = cplx($z, 0);
 1307: 	}
 1308: 	_divbyzero 'acoth(1)',  "$z - 1" if ($z - 1 == 0);
 1309: 	_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
 1310: 	return &log((1 + $z) / ($z - 1)) / 2;
 1311: }
 1312: 
 1313: #
 1314: # acotanh
 1315: #
 1316: # Alias for acot().
 1317: #
 1318: sub acotanh { LONCAPA::LCMathComplex::acoth(@_) }
 1319: 
 1320: #
 1321: # (atan2)
 1322: #
 1323: # Compute atan(z1/z2), minding the right quadrant.
 1324: #
 1325: sub atan2 {
 1326: 	my ($z1, $z2, $inverted) = @_;
 1327: 	my ($re1, $im1, $re2, $im2);
 1328: 	if ($inverted) {
 1329: 	    ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
 1330: 	    ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
 1331: 	} else {
 1332: 	    ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
 1333: 	    ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
 1334: 	}
 1335: 	if ($im1 || $im2) {
 1336: 	    # In MATLAB the imaginary parts are ignored.
 1337: 	    # warn "atan2: Imaginary parts ignored";
 1338: 	    # http://documents.wolfram.com/mathematica/functions/ArcTan
 1339: 	    # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
 1340: 	    my $s = $z1 * $z1 + $z2 * $z2;
 1341: 	    _divbyzero("atan2") if $s == 0;
 1342: 	    my $i = &i;
 1343: 	    my $r = $z2 + $z1 * $i;
 1344: 	    return -$i * &log($r / &sqrt( $s ));
 1345: 	}
 1346: 	return CORE::atan2($re1, $re2);
 1347: }
 1348: 
 1349: #
 1350: # display_format
 1351: # ->display_format
 1352: #
 1353: # Set (get if no argument) the display format for all complex numbers that
 1354: # don't happen to have overridden it via ->display_format
 1355: #
 1356: # When called as an object method, this actually sets the display format for
 1357: # the current object.
 1358: #
 1359: # Valid object formats are 'c' and 'p' for cartesian and polar. The first
 1360: # letter is used actually, so the type can be fully spelled out for clarity.
 1361: #
 1362: sub display_format {
 1363: 	my $self  = shift;
 1364: 	my %display_format = %DISPLAY_FORMAT;
 1365: 
 1366: 	if (ref $self) {			# Called as an object method
 1367: 	    if (exists $self->{display_format}) {
 1368: 		my %obj = %{$self->{display_format}};
 1369: 		@display_format{keys %obj} = values %obj;
 1370: 	    }
 1371: 	}
 1372: 	if (@_ == 1) {
 1373: 	    $display_format{style} = shift;
 1374: 	} else {
 1375: 	    my %new = @_;
 1376: 	    @display_format{keys %new} = values %new;
 1377: 	}
 1378: 
 1379: 	if (ref $self) { # Called as an object method
 1380: 	    $self->{display_format} = { %display_format };
 1381: 	    return
 1382: 		wantarray ?
 1383: 		    %{$self->{display_format}} :
 1384: 		    $self->{display_format}->{style};
 1385: 	}
 1386: 
 1387:         # Called as a class method
 1388: 	%DISPLAY_FORMAT = %display_format;
 1389: 	return
 1390: 	    wantarray ?
 1391: 		%DISPLAY_FORMAT :
 1392: 		    $DISPLAY_FORMAT{style};
 1393: }
 1394: 
 1395: #
 1396: # (_stringify)
 1397: #
 1398: # Show nicely formatted complex number under its cartesian or polar form,
 1399: # depending on the current display format:
 1400: #
 1401: # . If a specific display format has been recorded for this object, use it.
 1402: # . Otherwise, use the generic current default for all complex numbers,
 1403: #   which is a package global variable.
 1404: #
 1405: sub _stringify {
 1406: 	my ($z) = shift;
 1407: 
 1408: 	my $style = $z->display_format;
 1409: 
 1410: 	$style = $DISPLAY_FORMAT{style} unless defined $style;
 1411: 
 1412: 	return $z->_stringify_polar if $style =~ /^p/i;
 1413: 	return $z->_stringify_cartesian;
 1414: }
 1415: 
 1416: #
 1417: # ->_stringify_cartesian
 1418: #
 1419: # Stringify as a cartesian representation 'a+bi'.
 1420: #
 1421: sub _stringify_cartesian {
 1422: 	my $z  = shift;
 1423: 	my ($x, $y) = @{$z->_cartesian};
 1424: 	my ($re, $im);
 1425: 
 1426: 	my %format = $z->display_format;
 1427: 	my $format = $format{format};
 1428: 
 1429: 	if ($x) {
 1430: 	    if ($x =~ /^NaN[QS]?$/i) {
 1431: 		$re = $x;
 1432: 	    } else {
 1433: 		if ($x =~ /^-?\Q$Inf\E$/oi) {
 1434: 		    $re = $x;
 1435: 		} else {
 1436: 		    $re = defined $format ? sprintf($format, $x) : $x;
 1437: 		}
 1438: 	    }
 1439: 	} else {
 1440: 	    undef $re;
 1441: 	}
 1442: 
 1443: 	if ($y) {
 1444: 	    if ($y =~ /^(NaN[QS]?)$/i) {
 1445: 		$im = $y;
 1446: 	    } else {
 1447: 		if ($y =~ /^-?\Q$Inf\E$/oi) {
 1448: 		    $im = $y;
 1449: 		} else {
 1450: 		    $im =
 1451: 			defined $format ?
 1452: 			    sprintf($format, $y) :
 1453: 			    ($y == 1 ? "" : ($y == -1 ? "-" : $y));
 1454: 		}
 1455: 	    }
 1456: 	    $im .= "i";
 1457: 	} else {
 1458: 	    undef $im;
 1459: 	}
 1460: 
 1461: 	my $str = $re;
 1462: 
 1463: 	if (defined $im) {
 1464: 	    if ($y < 0) {
 1465: 		$str .= $im;
 1466: 	    } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i)  {
 1467: 		$str .= "+" if defined $re;
 1468: 		$str .= $im;
 1469: 	    }
 1470: 	} elsif (!defined $re) {
 1471: 	    $str = "0";
 1472: 	}
 1473: 
 1474: 	return $str;
 1475: }
 1476: 
 1477: 
 1478: #
 1479: # ->_stringify_polar
 1480: #
 1481: # Stringify as a polar representation '[r,t]'.
 1482: #
 1483: sub _stringify_polar {
 1484: 	my $z  = shift;
 1485: 	my ($r, $t) = @{$z->_polar};
 1486: 	my $theta;
 1487: 
 1488: 	my %format = $z->display_format;
 1489: 	my $format = $format{format};
 1490: 
 1491: 	if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) {
 1492: 	    $theta = $t; 
 1493: 	} elsif ($t == pi) {
 1494: 	    $theta = "pi";
 1495: 	} elsif ($r == 0 || $t == 0) {
 1496: 	    $theta = defined $format ? sprintf($format, $t) : $t;
 1497: 	}
 1498: 
 1499: 	return "[$r,$theta]" if defined $theta;
 1500: 
 1501: 	#
 1502: 	# Try to identify pi/n and friends.
 1503: 	#
 1504: 
 1505: 	$t -= int(CORE::abs($t) / pi2) * pi2;
 1506: 
 1507: 	if ($format{polar_pretty_print} && $t) {
 1508: 	    my ($a, $b);
 1509: 	    for $a (2..9) {
 1510: 		$b = $t * $a / pi;
 1511: 		if ($b =~ /^-?\d+$/) {
 1512: 		    $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
 1513: 		    $theta = "${b}pi/$a";
 1514: 		    last;
 1515: 		}
 1516: 	    }
 1517: 	}
 1518: 
 1519:         if (defined $format) {
 1520: 	    $r     = sprintf($format, $r);
 1521: 	    $theta = sprintf($format, $theta) unless defined $theta;
 1522: 	} else {
 1523: 	    $theta = $t unless defined $theta;
 1524: 	}
 1525: 
 1526: 	return "[$r,$theta]";
 1527: }
 1528: 
 1529: sub Inf {
 1530:     return $Inf;
 1531: }
 1532: 
 1533: 1;
 1534: __END__
 1535: 
 1536: =pod
 1537: 
 1538: =head1 NAME
 1539: 
 1540: LONCAPA::LCMathComplex - complex numbers and associated mathematical functions
 1541: 
 1542: =head1 SYNOPSIS
 1543: 
 1544: 	use LONCAPA::LCMathComplex;
 1545: 
 1546: 	$z = LONCAPA::LCMathComplex->make(5, 6);
 1547: 	$t = 4 - 3*i + $z;
 1548: 	$j = cplxe(1, 2*pi/3);
 1549: 
 1550: =head1 DESCRIPTION
 1551: 
 1552: Derived from Math::Complex.
 1553: 
 1554: Modified for use in Safe Space in LON-CAPA by removing the dependency on
 1555: Config.pm introduced in rev. 1.51 (which contains calls that are disallowed
 1556: in Safe Space).
 1557: 
 1558: In this LON-CAPA-specific version, the following code changes were made.
 1559: 
 1560: 15,16d17
 1561: < use Config;
 1562: <
 1563: 29,31c30
 1564: <     my $nvsize = $Config{nvsize} ||
 1565: <               ($Config{uselongdouble} && $Config{longdblsize}) ||
 1566: <                  $Config{doublesize};
 1567: ---
 1568: >     my $nvsize = 8;
 1569: 
 1570: Note: the value assigned to $nvsize is 8 by default.
 1571: 
 1572: Whenever ./UPDATE is run to install or update LON-CAPA, the code which
 1573: sets $nvsize in the standard Math::Complex script will be run in
 1574: LCMathComplex_check.piml and the value of $nvsize will be set to the
 1575: appropriate value: 4, 8, 10, 12 or 16.
 1576: 
 1577: In addition all instances referring to Math::Complex were changed to
 1578: refer to LONCAPA::LCMathComplex instead.
 1579: 
 1580: This package lets you create and manipulate complex numbers. By default,
 1581: I<Perl> limits itself to real numbers, but an extra C<use> statement brings
 1582: full complex support, along with a full set of mathematical functions
 1583: typically associated with and/or extended to complex numbers.
 1584: 
 1585: If you wonder what complex numbers are, they were invented to be able to solve
 1586: the following equation:
 1587: 
 1588: 	x*x = -1
 1589: 
 1590: and by definition, the solution is noted I<i> (engineers use I<j> instead since
 1591: I<i> usually denotes an intensity, but the name does not matter). The number
 1592: I<i> is a pure I<imaginary> number.
 1593: 
 1594: The arithmetics with pure imaginary numbers works just like you would expect
 1595: it with real numbers... you just have to remember that
 1596: 
 1597: 	i*i = -1
 1598: 
 1599: so you have:
 1600: 
 1601: 	5i + 7i = i * (5 + 7) = 12i
 1602: 	4i - 3i = i * (4 - 3) = i
 1603: 	4i * 2i = -8
 1604: 	6i / 2i = 3
 1605: 	1 / i = -i
 1606: 
 1607: Complex numbers are numbers that have both a real part and an imaginary
 1608: part, and are usually noted:
 1609: 
 1610: 	a + bi
 1611: 
 1612: where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
 1613: arithmetic with complex numbers is straightforward. You have to
 1614: keep track of the real and the imaginary parts, but otherwise the
 1615: rules used for real numbers just apply:
 1616: 
 1617: 	(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
 1618: 	(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
 1619: 
 1620: A graphical representation of complex numbers is possible in a plane
 1621: (also called the I<complex plane>, but it's really a 2D plane).
 1622: The number
 1623: 
 1624: 	z = a + bi
 1625: 
 1626: is the point whose coordinates are (a, b). Actually, it would
 1627: be the vector originating from (0, 0) to (a, b). It follows that the addition
 1628: of two complex numbers is a vectorial addition.
 1629: 
 1630: Since there is a bijection between a point in the 2D plane and a complex
 1631: number (i.e. the mapping is unique and reciprocal), a complex number
 1632: can also be uniquely identified with polar coordinates:
 1633: 
 1634: 	[rho, theta]
 1635: 
 1636: where C<rho> is the distance to the origin, and C<theta> the angle between
 1637: the vector and the I<x> axis. There is a notation for this using the
 1638: exponential form, which is:
 1639: 
 1640: 	rho * exp(i * theta)
 1641: 
 1642: where I<i> is the famous imaginary number introduced above. Conversion
 1643: between this form and the cartesian form C<a + bi> is immediate:
 1644: 
 1645: 	a = rho * cos(theta)
 1646: 	b = rho * sin(theta)
 1647: 
 1648: which is also expressed by this formula:
 1649: 
 1650: 	z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
 1651: 
 1652: In other words, it's the projection of the vector onto the I<x> and I<y>
 1653: axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
 1654: the I<argument> of the complex number. The I<norm> of C<z> is
 1655: marked here as C<abs(z)>.
 1656: 
 1657: The polar notation (also known as the trigonometric representation) is
 1658: much more handy for performing multiplications and divisions of
 1659: complex numbers, whilst the cartesian notation is better suited for
 1660: additions and subtractions. Real numbers are on the I<x> axis, and
 1661: therefore I<y> or I<theta> is zero or I<pi>.
 1662: 
 1663: All the common operations that can be performed on a real number have
 1664: been defined to work on complex numbers as well, and are merely
 1665: I<extensions> of the operations defined on real numbers. This means
 1666: they keep their natural meaning when there is no imaginary part, provided
 1667: the number is within their definition set.
 1668: 
 1669: For instance, the C<sqrt> routine which computes the square root of
 1670: its argument is only defined for non-negative real numbers and yields a
 1671: non-negative real number (it is an application from B<R+> to B<R+>).
 1672: If we allow it to return a complex number, then it can be extended to
 1673: negative real numbers to become an application from B<R> to B<C> (the
 1674: set of complex numbers):
 1675: 
 1676: 	sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
 1677: 
 1678: It can also be extended to be an application from B<C> to B<C>,
 1679: whilst its restriction to B<R> behaves as defined above by using
 1680: the following definition:
 1681: 
 1682: 	sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
 1683: 
 1684: Indeed, a negative real number can be noted C<[x,pi]> (the modulus
 1685: I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
 1686: number) and the above definition states that
 1687: 
 1688: 	sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
 1689: 
 1690: which is exactly what we had defined for negative real numbers above.
 1691: The C<sqrt> returns only one of the solutions: if you want the both,
 1692: use the C<root> function.
 1693: 
 1694: All the common mathematical functions defined on real numbers that
 1695: are extended to complex numbers share that same property of working
 1696: I<as usual> when the imaginary part is zero (otherwise, it would not
 1697: be called an extension, would it?).
 1698: 
 1699: A I<new> operation possible on a complex number that is
 1700: the identity for real numbers is called the I<conjugate>, and is noted
 1701: with a horizontal bar above the number, or C<~z> here.
 1702: 
 1703: 	 z = a + bi
 1704: 	~z = a - bi
 1705: 
 1706: Simple... Now look:
 1707: 
 1708: 	z * ~z = (a + bi) * (a - bi) = a*a + b*b
 1709: 
 1710: We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
 1711: distance to the origin, also known as:
 1712: 
 1713: 	rho = abs(z) = sqrt(a*a + b*b)
 1714: 
 1715: so
 1716: 
 1717: 	z * ~z = abs(z) ** 2
 1718: 
 1719: If z is a pure real number (i.e. C<b == 0>), then the above yields:
 1720: 
 1721: 	a * a = abs(a) ** 2
 1722: 
 1723: which is true (C<abs> has the regular meaning for real number, i.e. stands
 1724: for the absolute value). This example explains why the norm of C<z> is
 1725: noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
 1726: is the regular C<abs> we know when the complex number actually has no
 1727: imaginary part... This justifies I<a posteriori> our use of the C<abs>
 1728: notation for the norm.
 1729: 
 1730: =head1 OPERATIONS
 1731: 
 1732: Given the following notations:
 1733: 
 1734: 	z1 = a + bi = r1 * exp(i * t1)
 1735: 	z2 = c + di = r2 * exp(i * t2)
 1736: 	z = <any complex or real number>
 1737: 
 1738: the following (overloaded) operations are supported on complex numbers:
 1739: 
 1740: 	z1 + z2 = (a + c) + i(b + d)
 1741: 	z1 - z2 = (a - c) + i(b - d)
 1742: 	z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
 1743: 	z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
 1744: 	z1 ** z2 = exp(z2 * log z1)
 1745: 	~z = a - bi
 1746: 	abs(z) = r1 = sqrt(a*a + b*b)
 1747: 	sqrt(z) = sqrt(r1) * exp(i * t/2)
 1748: 	exp(z) = exp(a) * exp(i * b)
 1749: 	log(z) = log(r1) + i*t
 1750: 	sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
 1751: 	cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
 1752: 	atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
 1753: 
 1754: The definition used for complex arguments of atan2() is
 1755: 
 1756:        -i log((x + iy)/sqrt(x*x+y*y))
 1757: 
 1758: Note that atan2(0, 0) is not well-defined.
 1759: 
 1760: The following extra operations are supported on both real and complex
 1761: numbers:
 1762: 
 1763: 	Re(z) = a
 1764: 	Im(z) = b
 1765: 	arg(z) = t
 1766: 	abs(z) = r
 1767: 
 1768: 	cbrt(z) = z ** (1/3)
 1769: 	log10(z) = log(z) / log(10)
 1770: 	logn(z, n) = log(z) / log(n)
 1771: 
 1772: 	tan(z) = sin(z) / cos(z)
 1773: 
 1774: 	csc(z) = 1 / sin(z)
 1775: 	sec(z) = 1 / cos(z)
 1776: 	cot(z) = 1 / tan(z)
 1777: 
 1778: 	asin(z) = -i * log(i*z + sqrt(1-z*z))
 1779: 	acos(z) = -i * log(z + i*sqrt(1-z*z))
 1780: 	atan(z) = i/2 * log((i+z) / (i-z))
 1781: 
 1782: 	acsc(z) = asin(1 / z)
 1783: 	asec(z) = acos(1 / z)
 1784: 	acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
 1785: 
 1786: 	sinh(z) = 1/2 (exp(z) - exp(-z))
 1787: 	cosh(z) = 1/2 (exp(z) + exp(-z))
 1788: 	tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
 1789: 
 1790: 	csch(z) = 1 / sinh(z)
 1791: 	sech(z) = 1 / cosh(z)
 1792: 	coth(z) = 1 / tanh(z)
 1793: 
 1794: 	asinh(z) = log(z + sqrt(z*z+1))
 1795: 	acosh(z) = log(z + sqrt(z*z-1))
 1796: 	atanh(z) = 1/2 * log((1+z) / (1-z))
 1797: 
 1798: 	acsch(z) = asinh(1 / z)
 1799: 	asech(z) = acosh(1 / z)
 1800: 	acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
 1801: 
 1802: I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
 1803: I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
 1804: I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
 1805: I<acosech>, I<acotanh>, respectively.  C<Re>, C<Im>, C<arg>, C<abs>,
 1806: C<rho>, and C<theta> can be used also as mutators.  The C<cbrt>
 1807: returns only one of the solutions: if you want all three, use the
 1808: C<root> function.
 1809: 
 1810: The I<root> function is available to compute all the I<n>
 1811: roots of some complex, where I<n> is a strictly positive integer.
 1812: There are exactly I<n> such roots, returned as a list. Getting the
 1813: number mathematicians call C<j> such that:
 1814: 
 1815: 	1 + j + j*j = 0;
 1816: 
 1817: is a simple matter of writing:
 1818: 
 1819: 	$j = ((root(1, 3))[1];
 1820: 
 1821: The I<k>th root for C<z = [r,t]> is given by:
 1822: 
 1823: 	(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
 1824: 
 1825: You can return the I<k>th root directly by C<root(z, n, k)>,
 1826: indexing starting from I<zero> and ending at I<n - 1>.
 1827: 
 1828: The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
 1829: defined. In order to ensure its restriction to real numbers is conform
 1830: to what you would expect, the comparison is run on the real part of
 1831: the complex number first, and imaginary parts are compared only when
 1832: the real parts match.
 1833: 
 1834: =head1 CREATION
 1835: 
 1836: To create a complex number, use either:
 1837: 
 1838: 	$z = LONCAPA::LCMathComplex->make(3, 4);
 1839: 	$z = cplx(3, 4);
 1840: 
 1841: if you know the cartesian form of the number, or
 1842: 
 1843: 	$z = 3 + 4*i;
 1844: 
 1845: if you like. To create a number using the polar form, use either:
 1846: 
 1847: 	$z = LONCAPA::LCMathComplex->emake(5, pi/3);
 1848: 	$x = cplxe(5, pi/3);
 1849: 
 1850: instead. The first argument is the modulus, the second is the angle
 1851: (in radians, the full circle is 2*pi).  (Mnemonic: C<e> is used as a
 1852: notation for complex numbers in the polar form).
 1853: 
 1854: It is possible to write:
 1855: 
 1856: 	$x = cplxe(-3, pi/4);
 1857: 
 1858: but that will be silently converted into C<[3,-3pi/4]>, since the
 1859: modulus must be non-negative (it represents the distance to the origin
 1860: in the complex plane).
 1861: 
 1862: It is also possible to have a complex number as either argument of the
 1863: C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
 1864: the argument will be used.
 1865: 
 1866: 	$z1 = cplx(-2,  1);
 1867: 	$z2 = cplx($z1, 4);
 1868: 
 1869: The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
 1870: understand a single (string) argument of the forms
 1871: 
 1872:     	2-3i
 1873:     	-3i
 1874: 	[2,3]
 1875: 	[2,-3pi/4]
 1876: 	[2]
 1877: 
 1878: in which case the appropriate cartesian and exponential components
 1879: will be parsed from the string and used to create new complex numbers.
 1880: The imaginary component and the theta, respectively, will default to zero.
 1881: 
 1882: The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
 1883: understand the case of no arguments: this means plain zero or (0, 0).
 1884: 
 1885: =head1 DISPLAYING
 1886: 
 1887: When printed, a complex number is usually shown under its cartesian
 1888: style I<a+bi>, but there are legitimate cases where the polar style
 1889: I<[r,t]> is more appropriate.  The process of converting the complex
 1890: number into a string that can be displayed is known as I<stringification>.
 1891: 
 1892: By calling the class method C<LONCAPA::LCMathComplex::display_format> and
 1893: supplying either C<"polar"> or C<"cartesian"> as an argument, you
 1894: override the default display style, which is C<"cartesian">. Not
 1895: supplying any argument returns the current settings.
 1896: 
 1897: This default can be overridden on a per-number basis by calling the
 1898: C<display_format> method instead. As before, not supplying any argument
 1899: returns the current display style for this number. Otherwise whatever you
 1900: specify will be the new display style for I<this> particular number.
 1901: 
 1902: For instance:
 1903: 
 1904: 	use LONCAPA::LCMathComplex;
 1905: 
 1906: 	LONCAPA::LCMathComplex::display_format('polar');
 1907: 	$j = (root(1, 3))[1];
 1908: 	print "j = $j\n";		# Prints "j = [1,2pi/3]"
 1909: 	$j->display_format('cartesian');
 1910: 	print "j = $j\n";		# Prints "j = -0.5+0.866025403784439i"
 1911: 
 1912: The polar style attempts to emphasize arguments like I<k*pi/n>
 1913: (where I<n> is a positive integer and I<k> an integer within [-9, +9]),
 1914: this is called I<polar pretty-printing>.
 1915: 
 1916: For the reverse of stringifying, see the C<make> and C<emake>.
 1917: 
 1918: =head2 CHANGED IN PERL 5.6
 1919: 
 1920: The C<display_format> class method and the corresponding
 1921: C<display_format> object method can now be called using
 1922: a parameter hash instead of just a one parameter.
 1923: 
 1924: The old display format style, which can have values C<"cartesian"> or
 1925: C<"polar">, can be changed using the C<"style"> parameter.
 1926: 
 1927: 	$j->display_format(style => "polar");
 1928: 
 1929: The one parameter calling convention also still works.
 1930: 
 1931: 	$j->display_format("polar");
 1932: 
 1933: There are two new display parameters.
 1934: 
 1935: The first one is C<"format">, which is a sprintf()-style format string
 1936: to be used for both numeric parts of the complex number(s).  The is
 1937: somewhat system-dependent but most often it corresponds to C<"%.15g">.
 1938: You can revert to the default by setting the C<format> to C<undef>.
 1939: 
 1940: 	# the $j from the above example
 1941: 
 1942: 	$j->display_format('format' => '%.5f');
 1943: 	print "j = $j\n";		# Prints "j = -0.50000+0.86603i"
 1944: 	$j->display_format('format' => undef);
 1945: 	print "j = $j\n";		# Prints "j = -0.5+0.86603i"
 1946: 
 1947: Notice that this affects also the return values of the
 1948: C<display_format> methods: in list context the whole parameter hash
 1949: will be returned, as opposed to only the style parameter value.
 1950: This is a potential incompatibility with earlier versions if you
 1951: have been calling the C<display_format> method in list context.
 1952: 
 1953: The second new display parameter is C<"polar_pretty_print">, which can
 1954: be set to true or false, the default being true.  See the previous
 1955: section for what this means.
 1956: 
 1957: =head1 USAGE
 1958: 
 1959: Thanks to overloading, the handling of arithmetics with complex numbers
 1960: is simple and almost transparent.
 1961: 
 1962: Here are some examples:
 1963: 
 1964: 	use LONCAPA::LCMathComplex;
 1965: 
 1966: 	$j = cplxe(1, 2*pi/3);	# $j ** 3 == 1
 1967: 	print "j = $j, j**3 = ", $j ** 3, "\n";
 1968: 	print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
 1969: 
 1970: 	$z = -16 + 0*i;			# Force it to be a complex
 1971: 	print "sqrt($z) = ", sqrt($z), "\n";
 1972: 
 1973: 	$k = exp(i * 2*pi/3);
 1974: 	print "$j - $k = ", $j - $k, "\n";
 1975: 
 1976: 	$z->Re(3);			# Re, Im, arg, abs,
 1977: 	$j->arg(2);			# (the last two aka rho, theta)
 1978: 					# can be used also as mutators.
 1979: 
 1980: =head1 CONSTANTS
 1981: 
 1982: =head2 PI
 1983: 
 1984: The constant C<pi> and some handy multiples of it (pi2, pi4,
 1985: and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
 1986: exported:
 1987: 
 1988:     use LONCAPA::LCMathComplex ':pi'; 
 1989:     $third_of_circle = pi2 / 3;
 1990: 
 1991: =head2 Inf
 1992: 
 1993: The floating point infinity can be exported as a subroutine Inf():
 1994: 
 1995:     use LONCAPA::LCMathComplex qw(Inf sinh);
 1996:     my $AlsoInf = Inf() + 42;
 1997:     my $AnotherInf = sinh(1e42);
 1998:     print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
 1999: 
 2000: Note that the stringified form of infinity varies between platforms:
 2001: it can be for example any of
 2002: 
 2003:    inf
 2004:    infinity
 2005:    INF
 2006:    1.#INF
 2007: 
 2008: or it can be something else. 
 2009: 
 2010: Also note that in some platforms trying to use the infinity in
 2011: arithmetic operations may result in Perl crashing because using
 2012: an infinity causes SIGFPE or its moral equivalent to be sent.
 2013: The way to ignore this is
 2014: 
 2015:   local $SIG{FPE} = sub { };
 2016: 
 2017: =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
 2018: 
 2019: The division (/) and the following functions
 2020: 
 2021: 	log	ln	log10	logn
 2022: 	tan	sec	csc	cot
 2023: 	atan	asec	acsc	acot
 2024: 	tanh	sech	csch	coth
 2025: 	atanh	asech	acsch	acoth
 2026: 
 2027: cannot be computed for all arguments because that would mean dividing
 2028: by zero or taking logarithm of zero. These situations cause fatal
 2029: runtime errors looking like this
 2030: 
 2031: 	cot(0): Division by zero.
 2032: 	(Because in the definition of cot(0), the divisor sin(0) is 0)
 2033: 	Died at ...
 2034: 
 2035: or
 2036: 
 2037: 	atanh(-1): Logarithm of zero.
 2038: 	Died at...
 2039: 
 2040: For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
 2041: C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For the
 2042: logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
 2043: be C<1> (one).  For the C<atanh>, C<acoth>, the argument cannot be
 2044: C<-1> (minus one).  For the C<atan>, C<acot>, the argument cannot be
 2045: C<i> (the imaginary unit).  For the C<atan>, C<acoth>, the argument
 2046: cannot be C<-i> (the negative imaginary unit).  For the C<tan>,
 2047: C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
 2048: is any integer.  atan2(0, 0) is undefined, and if the complex arguments
 2049: are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
 2050: 
 2051: Note that because we are operating on approximations of real numbers,
 2052: these errors can happen when merely `too close' to the singularities
 2053: listed above.
 2054: 
 2055: =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
 2056: 
 2057: The C<make> and C<emake> accept both real and complex arguments.
 2058: When they cannot recognize the arguments they will die with error
 2059: messages like the following
 2060: 
 2061:     LONCAPA::LCMathComplex::make: Cannot take real part of ...
 2062:     LONCAPA::LCMathComplex::make: Cannot take real part of ...
 2063:     LONCAPA::LCMathComplex:emake: Cannot take rho of ...
 2064:     LONCAPA::LCMathComplex::emake: Cannot take theta of ...
 2065: 
 2066: =head1 BUGS
 2067: 
 2068: Saying C<use LONCAPA::LCMathComplex;> exports many mathematical routines in the
 2069: caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
 2070: This is construed as a feature by the Authors, actually... ;-)
 2071: 
 2072: All routines expect to be given real or complex numbers. Don't attempt to
 2073: use BigFloat, since Perl has currently no rule to disambiguate a '+'
 2074: operation (for instance) between two overloaded entities.
 2075: 
 2076: In Cray UNICOS there is some strange numerical instability that results
 2077: in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast.  Beware.
 2078: The bug may be in UNICOS math libs, in UNICOS C compiler, in LONCAPA::LCMathComplex.
 2079: Whatever it is, it does not manifest itself anywhere else where Perl runs.
 2080: 
 2081: =head1 SEE ALSO
 2082: 
 2083: L<Math::Trig>
 2084: 
 2085: =head1 AUTHORS
 2086: 
 2087: Daniel S. Lewart <F<lewart!at!uiuc.edu>>
 2088: Jarkko Hietaniemi <F<jhi!at!iki.fi>>
 2089: Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>
 2090: 
 2091: =head1 LICENSE
 2092: 
 2093: This library is free software; you can redistribute it and/or modify
 2094: it under the same terms as Perl itself. 
 2095: 
 2096: =cut
 2097: 
 2098: 1;
 2099: 
 2100: # eof

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>